Skip to main content

Advertisement

Log in

Dynamic delineation of management zones for site-specific nitrogen fertilization in a citrus orchard

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Estimating crop nitrogen status to optimize production and minimize environmental pollution is a major challenge for modern agriculture. The study objective was to develop a multivariate spatiotemporal dynamic clustering approach to generate Nitrogen (N) Management Zones (MZs) in a citrus orchard during the growing season. The research was conducted in four citrus plots in the coastal area of Israel. Five variables were selected to characterize each plot’s spatiotemporal variability of canopy N content. These were split into constant (i.e., elevation, northness, and slope) and non-constant (i.e., canopy N content and tree height) variables. The non-constant data were obtained via bi-monthly imaging campaigns with a multispectral camera mounted on an unmanned aerial vehicle (UAV) throughout the growing season of 2019. The selected variables were then standardized to define the clusters by applying the Getis-Ord Gi* z-score. These were used to develop a spatiotemporal dynamic clustering model using Fuzzy C-means (FCM). Four input variables were investigated in this final stage, including the constant variables only and different combinations of constant and non-constant variables. The support vector machine regression model results for estimating canopy N-content from multispectral images were R2 = 0.771 and RMSE = 0.227. This model was used to predict monthly canopy-level N content and classify the N content levels based on the October N-to-yield content envelope curve. Delineating MZs was followed by the comparison of spatial association among cluster maps. This process may support site-specific and time-specific nitrogen management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Agelet, L. E., & Hurburgh, C. R., Jr. (2010). A tutorial on near infrared spectroscopy and its calibration. Critical Reviews in Analytical Chemistry, 40(4), 246–260.

    Article  CAS  Google Scholar 

  • Aggelopoulou, A. D., Bochtis, D., Fountas, S., Swain, K. C., Gemtos, T. A., & Nanos, G. D. (2011). Yield prediction in apple orchards based on image processing. Precision Agriculture, 12(3), 448–456.

    Article  Google Scholar 

  • Ali, A., & Imran, M. (2021). Remotely sensed real-time quantification of biophysical and biochemical traits of Citrus (Citrus sinensis L.) fruit orchards–A review. Scientia Horticulturae, 282, 110024.

  • Ampatzidis, Y., & Partel, V. (2019). UAV-based high throughput phenotyping in citrus utilizing multispectral imaging and artificial intelligence. Remote Sensing, 11(4), 410.

    Article  Google Scholar 

  • Anselin, L., & Getis, A. (1992). Spatial statistical analysis and geographic information systems. The Annals of Regional Science, 26(1), 19–33.

    Article  Google Scholar 

  • Apolo-Apolo, O. E., Martínez-Guanter, J., Egea, G., Raja, P., & Pérez-Ruiz, M. (2020). Deep learning techniques for estimation of the yield and size of citrus fruits using a UAV. European Journal of Agronomy, 115, 126030.

    Article  Google Scholar 

  • Arun, P. V. (2013). A comparative analysis of different DEM interpolation methods. The Egyptian Journal of Remote Sensing and Space Science, 16(2), 133–139.

    Article  Google Scholar 

  • Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., et al. (2020). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242, 111758.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST, 27(3), 716–748.

    Article  Google Scholar 

  • Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision Agriculture and Sustainability. Precision Agriculture, 5(4), 359–387.

    Article  Google Scholar 

  • Boydell, B., & McBratney, A. B. (2002). Identifying potential within-field management zones from cotton-yield estimates. Precision Agriculture, 3(1), 9–23.

    Article  Google Scholar 

  • Caliński, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics-Theory and Methods, 3(1), 1–27.

    Article  Google Scholar 

  • Cameira, M. D. R., & Mota, M. (2017). Nitrogen related diffuse pollution from horticulture production—Mitigation practices and assessment strategies. Horticulturae, 3(1), 25.

    Article  Google Scholar 

  • Campello, R. J. G. B., & Hruschka, E. R. (2006). A fuzzy extension of the silhouette width criterion for cluster analysis. Fuzzy Sets and Systems, 157(21), 2858–2875.

    Article  Google Scholar 

  • Castle, W. S., & Tucker, D. P. H. (1978). Susceptibility of citrus nursery trees to herbicides as influenced by rootstock and scion cultivar. HortScience, 13(6):692–693.

  • Chapman, H. (1949). Citrus leaf analysis: Nutrient deficiencies, excesses and fertilizer requirements of soil indicated by diagnostic aid. California Agriculture, 3(11), 10–14.

    Google Scholar 

  • Cohen, Y., Alchanatis, V., Saranga, Y., Rosenberg, O., Sela, E., & Bosak, A. (2017). Mapping water status based on aerial thermal imagery: Comparison of methodologies for upscaling from a single leaf to commercial fields. Precision Agriculture, 18(5), 801–822.

    Article  Google Scholar 

  • Colaço, A. F., & Molin, J. P. (2017). Variable rate fertilization in citrus: A long term study. Precision Agriculture, 18(2), 169–191.

    Article  Google Scholar 

  • Cui, M., Zeng, L., Qin, W., & Feng, J. (2020). Measures for reducing nitrate leaching in orchards: A review. Environmental Pollution, 114553.

  • Dag, A., Ben-David, E., Kerem, Z., Ben-Gal, A., Erel, R., Basheer, L., & Yermiyahu, U. (2009). Olive oil composition as a function of nitrogen, phosphorus and potassium plant nutrition. Journal of the Science of Food and Agriculture, 89(11), 1871–1878.

    Article  CAS  Google Scholar 

  • Díaz-Varela, R., de la Rosa, R., León, L., & Zarco-Tejada, P. (2015). High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing, 7(4), 4213–4232.

    Article  Google Scholar 

  • Dobermann, A., Ping, J. L., Adamchuk, V. I., Simbahan, G. C., & Ferguson, R. B. (2003). Classification of crop yield variability in irrigated production fields. Agronomy Journal, 95(5), 1105–1120.

    Article  Google Scholar 

  • Du, M., & Noguchi, N. (2017). Monitoring of wheat growth status and mapping of wheat yield’s within-field spatial variations using color images acquired from UAV-camera system. Remote Sensing, 9(3), 289.

    Article  Google Scholar 

  • Feng, Y., Cui, L., Chen, X., & Liu, Y. (2017). A comparative study of spatially clustered distribution of jumbo flying squid (Dosidicus gigas) offshore Peru. Journal of Ocean University of China, 16(3), 490–500. https://doi.org/10.1007/s11802-017-3214-y

    Article  Google Scholar 

  • Fontanet, M., Scudiero, E., Skaggs, T. H., Fernàndez-Garcia, D., Ferrer, F., Rodrigo, G., & Bellvert, J. (2020). Dynamic management zones for irrigation scheduling. Agricultural Water Management, 238, 106207.

    Article  Google Scholar 

  • Freidenreich, A., Barraza, G., Jayachandran, K., & Khoddamzadeh, A. A. (2019). Precision agriculture application for sustainable nitrogen management of justicia brandegeana using optical sensor technology. Agriculture, 9(5), 98.

    Article  CAS  Google Scholar 

  • Friedel, M., Hendgen, M., Stoll, M., & Löhnertz, O. (2020). Performance of reflectance indices and of a handheld device for estimating in-field the nitrogen status of grapevine leaves. Australian Journal of Grape and Wine Research, 26(2), 110–120.

    Article  CAS  Google Scholar 

  • Gavioli, A., de Souza, E. G., Bazzi, C. L., Guedes, L. P. C., & Schenatto, K. (2016). Optimization of management zone delineation by using spatial principal components. Computers and Electronics in Agriculture, 127, 302–310.

    Article  Google Scholar 

  • Hengl, T. (2009). A practical guide to geostatistical mapping.

  • Henning, C. (2020). Fpc: flexible procedures for clustering. R package version 2.2–5.

  • Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., & Alchanatis, V. (2010). SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing, 31(19), 5127–5143.

    Article  Google Scholar 

  • Hobart, M., Pflanz, M., Weltzien, C., & Schirrmann, M. (2020). Growth height determination of tree walls for precise monitoring in apple fruit production using UAV photogrammetry. Remote Sensing, 12(10), 1656.

    Article  Google Scholar 

  • Jin, Y., Chen, B., Lampinen, B. D., & Brown, P. H. (2020). Advancing agricultural production with machine learning analytics: Yield determinants for California’s Almond Orchards. Frontiers in Plant Science, 11, 290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Legaz, F., & Primo-Millo, E. (2000). Guidelines for citrus fertilization under located drip irrigation. Fertirrigation in citrus (Giner JF, Phytoma-España, eds.). Polytechnic University of València. Department of the Agriculture, Fish and Food of the Valencian Government, Valencia, Spain, 137–155.

  • Leutner, B., Horning, N., & Leutner, M. B. (2017). Package ‘RStoolbox.’ R Foundation for Statistical Computing, Version 0.1.

  • Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Journal of experimental social psychology detecting outliers : Do not use standard deviation around the mean, use absolute deviation around the median, 4–6.

  • Liu, H., Whiting, M. L., Ustin, S. L., Zarco-Tejada, P. J., Huffman, T., & Zhang, X. (2018). Maximizing the relationship of yield to site-specific management zones with object-oriented segmentation of hyperspectral images. Precision Agriculture, 19(2), 348–364.

    Article  Google Scholar 

  • López-Granados, F., Jurado-Expósito, M., Alamo, S., & Garcıa-Torres, L. (2004). Leaf nutrient spatial variability and site-specific fertilization maps within olive (Olea europaea L.) orchards. European Journal of Agronomy, 21(2), 209–222.

    Article  Google Scholar 

  • Luković, J., Blagojevć, D., Kilibarda, M., & Bajat, B. (2015). Spatial pattern of North Atlantic Oscillation impact on rainfall in Serbia. Spatial Statistics, 14, 39–52. https://doi.org/10.1016/J.SPASTA.2015.04.007

    Article  Google Scholar 

  • McBratney, A. B., & Odeh, I. O. A. (1997). Application of fuzzy sets in soil science: Fuzzy logic, fuzzy measurements and fuzzy decisions. Geoderma, 77(2–4), 85–113. https://doi.org/10.1016/S0016-7061(97)00017-7

    Article  Google Scholar 

  • McClymont, L., Goodwin, I., Mazza, M., Baker, N., Lanyon, D. M., Zerihun, A., et al. (2012). Effect of site-specific irrigation management on grapevine yield and fruit quality attributes. Irrigation Science, 30(6), 461–470.

    Article  Google Scholar 

  • Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C. C., & Lin, C. C. (2021). e1071: Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien [R Package Version 1.7–9]. Comprehensive R Archive Network (CRAN).

  • Min, M., & Lee, W. S. (2005). Determination of significant wavelengths and prediction of nitrogen content for citrus. Transactions of the ASAE, 48(2), 455–461.

    Article  CAS  Google Scholar 

  • Moghimi, A., Pourreza, A., Zuniga-Ramirez, G., Williams, L. E., & Fidelibus, M. W. (2020). A novel machine learning approach to estimate grapevine leaf nitrogen concentration using aerial multispectral imagery. Remote Sensing, 12(21), 3515.

    Article  Google Scholar 

  • Morgan, K. T., Obreza, T. A., Scholberg, J. M. S., Parsons, L. R., & Wheaton, T. A. (2006). Citrus water uptake dynamics on a sandy Florida Entisol. Soil Science Society of America Journal, 70(1), 90–97.

    Article  CAS  Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  • Nowosad, J., & Stepinski, T. F. (2018). Spatial association between regionalizations using the information-theoretical V-measure. International Journal of Geographical Information Science, 32(12), 2386–2401.

    Article  Google Scholar 

  • Obreza, T. A., Boman, B. J., Zekri, M., & Futch, S. H. (2020). Nutrition of Florida Citrus Trees: Chapter 7. Methods of Fertilizer Application. EDIS, 2020(2).

  • Ohana-Levi, N., Ben-Gal, A., Peeters, A., Termin, D., Linker, R., Baram, S., et al. (2021). A comparison between spatial clustering models for determining N-fertilization management zones in orchards. Precision Agriculture, 22(1), 99–123.

    Article  CAS  Google Scholar 

  • Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2022). vegan: Community Ecology Package. R Package Version, 2(5–7), 2020.

    Google Scholar 

  • Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: Distributional issues and an application. Geographical Analysis, 27(4), 286–306.

    Article  Google Scholar 

  • Padilla, F. M., Gallardo, M., Peña-Fleitas, M. T., De Souza, R., & Thompson, R. B. (2018). Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors, 18(7), 2083.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pebesma, E. J. (2018). Simple features for R: Standardized support for spatial vector data. R J., 10(1), 439.

    Article  Google Scholar 

  • Peeters, A., Zude, M., Käthner, J., Ünlü, M., Kanber, R., Hetzroni, A., et al. (2015). Getis–Ord’s hot-and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data. Computers and Electronics in Agriculture, 111, 140–150.

    Article  Google Scholar 

  • Peralta, D., Del Río, S., Ramírez-Gallego, S., Triguero, I., Benitez, J. M., & Herrera, F. (2015). Evolutionary feature selection for big data classification: A mapreduce approach. Mathematical Problems in Engineering, 2015, 1–11.

    Article  Google Scholar 

  • Prado Osco, L., Marques Ramos, A. P., Roberto Pereira, D., Moriya, A. S., É., Nobuhiro Imai, N., Takashi Matsubara, E., et al. (2019). Predicting canopy nitrogen content in citrus-trees using random forest algorithm associated to spectral vegetation indices from UAV-imagery. Remote Sensing, 11(24), 2925.

    Article  Google Scholar 

  • Qin, W., Assinck, F. B. T., Heinen, M., & Oenema, O. (2016a). Water and nitrogen use efficiencies in citrus production: A meta-analysis. Agriculture, Ecosystems & Environment, 222, 103–111.

    Article  CAS  Google Scholar 

  • Qin, W., Heinen, M., Assinck, F. B. T., & Oenema, O. (2016b). Exploring optimal fertigation strategies for orange production, using soil–crop modelling. Agriculture, Ecosystems & Environment, 223, 31–40.

    Article  CAS  Google Scholar 

  • Quiñones, A., Bañuls, J., Millo, E. P., & Legaz, F. (2003). Effects of 15N application frequency on nitrogen uptake efficiency in Citrus trees. Journal of Plant Physiology, 160(12), 1429–1434.

    Article  PubMed  Google Scholar 

  • Raveh, E. (2013). Citrus leaf nutrient status: A critical evaluation of guidelines for optimal yield in Israel. Journal of Plant Nutrition and Soil Science, 176(3), 420–428.

    Article  CAS  Google Scholar 

  • Reyes, J., Wendroth, O., Matocha, C., & Zhu, J. (2019). Delineating site-specific management zones and evaluating soil water temporal dynamics in a farmer’s field in Kentucky. Vadose Zone Journal, 18(1), 1–19.

    Article  Google Scholar 

  • Richards, J. A., & Richards, J. A. (1999). Remote sensing digital image analysis (Vol. 3). Springer.

  • Rogers, S. R., Manning, I., & Livingstone, W. (2020). Comparing the spatial accuracy of Digital Surface Models from four unoccupied aerial systems: Photogrammetry versus LiDAR. Remote Sensing, 12(17), 2806.

    Article  Google Scholar 

  • Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evaluation measure. In Proceedings of the 2007 joint conference on empirical methods in natural language processing and computational natural language learning (EMNLP-CoNLL) (pp. 410–420).

  • Ruffo, M. L., Bollero, G. A., Bullock, D. S., & Bullock, D. G. (2006). Site-specific production functions for variable rate corn nitrogen fertilization. Precision Agriculture, 7(5), 327–342.

    Article  Google Scholar 

  • Schenatto, K., Souza, E. G., Bazzi, C. L., & Beneduzzi, H. M. (2015). Management zones with NDVI Data through Corn and Soybean yield. In First conference on proximal sensing supporting precision agriculture (Vol. 2015, pp. 1–5). European Association of Geoscientists & Engineers.

  • Scudiero, E., Teatini, P., Manoli, G., Braga, F., Skaggs, T. H., & Morari, F. (2018). Workflow to establish time-specific zones in precision agriculture by spatiotemporal integration of plant and soil sensing data. Agronomy, 8(11), 253.

    Article  Google Scholar 

  • Sete, P. B., Comin, J. J., Ciotta, M. N., Salume, J. A., Thewes, F., Brackmann, A., et al. (2019). Nitrogen fertilization affects yield and fruit quality in pear. Scientia Horticulturae, 258, 108782.

    Article  CAS  Google Scholar 

  • Svoray, T., Hassid, I., Atkinson, P. M., Moebius-Clune, B. N., & van Es, H. M. (2015). Mapping soil health over large agriculturally important areas. Soil Science Society of America Journal, 79, 1420–1434. https://doi.org/10.2136/sssaj2014.09.0371

    Article  CAS  Google Scholar 

  • Tang, Y., Dananjayan, S., Hou, C., Guo, Q., Luo, S., & He, Y. (2021). A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Computers and Electronics in Agriculture, 180, 105895.

    Article  Google Scholar 

  • Tremblay, N., Bouroubi, M. Y., Vigneault, P., & Bélec, C. (2011). Guidelines for in-season nitrogen application for maize (Zea mays L.) based on soil and terrain properties. Field Crops Research, 122(3), 273–283.

    Article  Google Scholar 

  • Wang, R., & Gamon, J. A. (2019). Remote sensing of terrestrial plant biodiversity. Remote Sensing of Environment, 231, 111218.

    Article  Google Scholar 

  • Wang, X., & Xu, Y. (2019). An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. In IOP conference series: Materials science and engineering (Vol. 569, p. 52024). IOP Publishing.

  • Weih, M., Asplund, L., & Bergkvist, G. (2011). Assessment of nutrient use in annual and perennial crops: A functional concept for analyzing nitrogen use efficiency. Plant and Soil, 339(1–2), 513–520.

    Article  CAS  Google Scholar 

  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300–314. https://doi.org/10.1016/J.GEOMORPH.2012.08.021

    Article  Google Scholar 

  • Williamson, T. J., Vanni, M. J., & Renwick, W. H. (2020). Spatial and temporal variability of nutrient dynamics and ecosystem metabolism in a hyper-eutrophic reservoir differ between a wet and dry year. Ecosystems.

  • Ye, X., Abe, S., & Zhang, S. (2020). Estimation and mapping of nitrogen content in apple trees at leaf and canopy levels using hyperspectral imaging. Precision Agriculture, 21(1), 198–225.

    Article  Google Scholar 

  • Zaman, Q. U., Schumann, A. W., & Hostler, H. K. (2006). Estimation of citrus fruit yield using ultrasonically-sensed tree size. Applied Engineering in Agriculture, 22(1), 39–44.

    Article  Google Scholar 

  • Zarate-Valdez, J. L., Muhammad, S., Saa, S., Lampinen, B. D., & Brown, P. H. (2015). Light interception, leaf nitrogen and yield prediction in almonds: A case study. European Journal of Agronomy, 66, 1–7.

    Article  CAS  Google Scholar 

  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture, 36(2–3), 113–132.

    Article  Google Scholar 

  • Zhou, K., Fu, C., & Yang, S. (2014). Fuzziness parameter selection in fuzzy c-means: The perspective of cluster validation. Science China Information Sciences, 57(11), 1–8.

    Google Scholar 

  • Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. P. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375–390.

    Article  Google Scholar 

  • Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A., & Munné-Bosch, S. (2019). Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Science, 289, 110270.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Center for Fertilization and Plant Nutrition (CFPN; www.cfpn.center).

Funding

Center for Fertilization and Plant Nutrition (CFPN), www.cfpn.center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Paz-Kagan.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3583 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Termin, D., Linker, R., Baram, S. et al. Dynamic delineation of management zones for site-specific nitrogen fertilization in a citrus orchard. Precision Agric 24, 1570–1592 (2023). https://doi.org/10.1007/s11119-023-10008-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10008-w

Keywords

Navigation