Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Core gut microbial communities are maintained by beneficial interactions and strain variability in fish

Abstract

The term core microbiome describes microbes that are consistently present in a particular habitat. If the conditions in that habitat are highly variable, core microbes may also be considered to be ecological generalists. However, little is known about whether metabolic competition and microbial interactions influence the ability of some microbes to persist in the core microbiome while others cannot. We investigated microbial communities at three sites in the guts of European seabass under four dietary conditions. We identified generalist core microbial populations in each gut site that are shared across fish, present under multiple diets and persistent over time. We found that core microbes tend to show synergistic growth in co-culture, and low levels of predicted and validated metabolic competition. Within core microbial species, we found high levels of intraspecific variability and strain-specific habitat specialization. Thus, both intraspecific variability and interspecific facilitation may contribute to the ecological stability of the animal core microbiome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Habitat filtering by gut part shapes seabass gut microbial communities.
Fig. 2: A core microbial community composed of 8 abundant generalist species persists across different habitats of diets and gut parts, and across different species of fish.
Fig. 3: Facilitation and positive interactions are prevalent among identified generalist core microbes.
Fig. 4: Generalist core species show higher strain variability, which is congruent with their habitat preferences.

Similar content being viewed by others

Data availability

Sequencing data are provided at the NCBI (SRA) database under the study accession code SRP118834. The non-sequencing related data are provided in Supplementary Data 1.

References

  1. Shabat, S. K. B. et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 10, 2958–2972 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedman, N. et al. Diet‐induced changes of redox potential underlie compositional shifts in the rumen archaeal community. Environ. Microbiol. 19, 174–184 (2017).

    CAS  PubMed  Google Scholar 

  3. Zeevi, D. et al. Structural variation in the gut microbiome associates with host health. Nature 568, 43–48 (2019).

    CAS  PubMed  Google Scholar 

  4. Kayser, J., Schreck, C. F., Yu, Q., Gralka, M. & Hallatschek, O. Emergence of evolutionary driving forces in pattern-forming microbial populations. Proc. R. Soc. B 373, 20170106 (2018).

    Google Scholar 

  5. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016).

    CAS  PubMed  Google Scholar 

  6. Jeraldo, P. et al. Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. Proc. Natl Acad. Sci. USA 109, 9692–9698 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaani, Y., Zehavi, T., Eyal, S., Miron, J. & Mizrahi, I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 12, 2446–2457 (2018).

  8. Ghoul, M. & Mitri, S. The ecology and evolution of microbial competition. Trends Microbiol. 24, 833–845 (2016).

    CAS  PubMed  Google Scholar 

  9. Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of interspecies interactions in microbial ecosystems. Nat. Commun. 10, 103 (2019).

    PubMed  PubMed Central  Google Scholar 

  10. Travisano, M. & Rainey, P. B. Studies of adaptive radiation using model microbial systems. Am. Nat. 156, S35–S44 (2000).

    PubMed  Google Scholar 

  11. Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Shade, A. & Handelsman, J. Beyond the Venn diagram: the hunt for a core microbiome. Environ. Microbiol. 14, 4–12 (2011).

    PubMed  Google Scholar 

  13. Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Astudillo-García, C. et al. Evaluating the core microbiota in complex communities: a systematic investigation. Environ. Microbiol. 19, 1450–1462 (2017).

    PubMed  Google Scholar 

  15. Coyte, K. Z., Schluter, J. & Foster, K. R. The ecology of the microbiome: networks, competition, and stability. Science 350, 663–666 (2015).

    CAS  PubMed  Google Scholar 

  16. Bastolla, U. et al. The architecture of mutualistic networks minimizes competition and increases biodiversity. Nature 458, 1018–1020 (2009).

    Google Scholar 

  17. Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).

    PubMed  Google Scholar 

  18. Lurgi, M., Montoya, D. & Montoya, J. M. The effects of space and diversity of interaction types on the stability of complex ecological networks. Theor. Ecol. 9, 3–13 (2016).

    Google Scholar 

  19. Bolnick, D. I. & Doebeli, M. Sexual dimorphism and adaptive speciation: two sides of the same ecological coin. Evolution 57, 2433–2449 (2003).

    PubMed  Google Scholar 

  20. Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).

    Google Scholar 

  21. Hacquard, S. et al. Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17, 603–616 (2015).

    CAS  PubMed  Google Scholar 

  22. Wilson, J. & Castro, L. Morphological diversity of the gastrointestinal tract in fishes. Fish. Physiol. 30, 1–55 (2010).

    Google Scholar 

  23. Lanan, M. C., Rodrigues, P. A. P., Agellon, A., Jansma, P. & Wheeler, D. E. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 10, 1866–1876 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Godoy-Vitorino, F. et al. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J. 6, 531–541 (2012).

    CAS  PubMed  Google Scholar 

  25. Zhang, Z. et al. Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J. 8, 881–893 (2014).

    PubMed  Google Scholar 

  26. Looft, T. et al. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. ISME J. 8, 1566–1576 (2014).

    PubMed Central  Google Scholar 

  27. Sriswasdi, S., Yang, C.-c & Iwasaki, W. Generalist species drive microbial dispersion and evolution. Nat. Commun. 8, 1162 (2017).

    PubMed  PubMed Central  Google Scholar 

  28. Levins, R. Evolution in Changing Environments: Some Theoretical Explorations (Princeton Univ. Press, 1968).

  29. Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio 5, e01371-14 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Kreimer, A., Doron-Faigenboim, A., Borenstein, E. & Freilich, S. NetCmpt: a network-based tool for calculating the metabolic competition between bacterial species. Bioinformatics 28, 2195–2197 (2012).

    CAS  PubMed  Google Scholar 

  31. Cordero, O. X. et al. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337, 1228–1231 (2012).

    CAS  PubMed  Google Scholar 

  32. Bolnick, D. I. Intraspecific competition favours niche width expansion in Drosophila melanogaster. Nature 410, 463–466 (2001).

    CAS  PubMed  Google Scholar 

  33. Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Nat. 172, 868–877 (2008).

    PubMed  Google Scholar 

  34. Muller, E. E. L. Determining microbial niche breadth in the environment for better ecosystem fate predictions. mSystems 4, e00080-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  35. Soule, M. & Stewart, B. R. The “niche-variation” hypothesis: a test and alternatives. Am. Nat. 104, 85–97 (1970).

    Google Scholar 

  36. Dennison, M. D. & Baker, A. J. Morphometric variability in continental and Atlantic island populations of chaffinches (Fringilla coelebs). Evolution 45, 29–39 (1991).

    PubMed  Google Scholar 

  37. Feinsinger, P. & Swarm, L. A. “Ecological release,” seasonal variation in food supply, and the hummingbird Amazilia tobaci on Trinidad and Tobago. Ecology 63, 1574–1587 (1982).

    Google Scholar 

  38. Meiri, S., Dayan, T. & Simberloff, D. Variability and sexual size dimorphism in carnivores: testing the niche variation hypothesis. Ecology 86, 1432–1440 (2005).

    Google Scholar 

  39. Lister, B. C. & McMurtrie, R. E. On size variation in anoline lizards. Am. Nat. 110, 311–314 (1976).

    Google Scholar 

  40. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zaneveld, J. R., Lozupone, C., Gordon, J. I. & Knight, R. Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Res. 38, 3869–3879 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chaffron, S., Rehrauer, H., Pernthaler, J. & von Mering, C. A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res. 20, 947–959 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Roeselers, G. et al. Evidence for a core gut microbiota in the zebrafish. ISME J. 5, 1595–1608 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun, H., Jami, E., Harpaz, S. & Mizrahi, I. Involvement of dietary salt in shaping bacterial communities in European sea bass (Dicentrarchus labrax). Sci. Rep. 3, 1558 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS  PubMed  Google Scholar 

  48. Jing, X. et al. The bacterial communities in plant phloem-sap-feeding insects. Mol. Ecol. 23, 1433–1444 (2014).

    CAS  PubMed  Google Scholar 

  49. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Colwell, R. K. & Futuyma, D. J. On the measurement of niche breadth and overlap. Ecology 52, 567–576 (1971).

    PubMed  Google Scholar 

  53. Roughgarden, J. Theory of Population Genetics and Evolutionary Ecology: An Introduction (1979).

  54. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    CAS  PubMed  Google Scholar 

  55. Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Google Scholar 

  56. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

  57. Gryta, A., Frąc, M. & Oszust, K. The application of the Biolog EcoPlate approach in ecotoxicological evaluation of dairy sewage sludge. Appl. Biochem. Biotechnol. 174, 1434–1443 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7, 335–336 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ward, D. M. et al. Genomics, environmental genomics and the issue of microbial species. Heredity 100, 207–219 (2008).

    CAS  PubMed  Google Scholar 

  60. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Faust, K. & Raes, J. CoNet app: inference of biological association networks using Cytoscape. F1000res 5, 1519 (2016).

Download references

Acknowledgements

The research described here was supported by grants from the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant no. 640384), the Israel Science Foundation (grant no. 1947/19) and the Chief Scientist of the Ministry of Agriculture and Rural Development (grant no. 356-0665-14).

Author information

Authors and Affiliations

Authors

Contributions

F.K. conducted the experiments, molecular work and sequencing, analysed and interpreted the sequencing and molecular data, and wrote the manuscript. G.S. analysed some of the sequencing data. J.F. analysed some of the sequencing data and provided advice on analysis. S.E. conducted some of the microbiology experiments and isolation. O.O. consulted on the interpretation of the data. S.H. and A.C. helped with animal experiments and with the supervision and financial support of the project. I.M. obtained the funding, supervised the study, analysed and interpreted the data, financially managed the project and wrote the manuscript.

Corresponding author

Correspondence to Itzhak Mizrahi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–19, Supplementary Figs. 1–14 and Supplementary References.

Reporting Summary

Supplementary Data for Supplementary Table 16

Median richness of strains per part is presented in the table along with the P values after comparison of the strain richness between the different gut parts (n = 36 fish per part). Empty cells indicate non-significant P values for the one-sided tests performed (as it is indicated below the Wilcoxon P values in the table). The average occurrence and median abundance is also calculated in the table for the different parts, showing no significant differences in the abundances of these OTUs. The right two columns show the average abundance of strains that show niche expansion patterns compared with the strains that do not show the patterns.

Supplementary Data for Supplementary Table 17

Clusters with 97% sequence similarity of microbes, showing major and minor sequences per OTU, as described in the ‘Quantification of sequencing noise’ section in the Methods.

Supplementary Data 1

Quantitative PCR from microbial interactions using specific primers. The growth results are expressed in copy number μl−1 (using specific primers for each microbe) and the experiment was performed in triplicate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokou, F., Sasson, G., Friedman, J. et al. Core gut microbial communities are maintained by beneficial interactions and strain variability in fish. Nat Microbiol 4, 2456–2465 (2019). https://doi.org/10.1038/s41564-019-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-019-0560-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing