skip to main content
10.1145/3411764.3445495acmconferencesArticle/Chapter ViewAbstractPublication PageschiConference Proceedingsconference-collections
research-article

Drone in Love: Emotional Perception of Facial Expressions on Flying Robots

Authors Info & Claims
Published:07 May 2021Publication History

ABSTRACT

Drones are rapidly populating human spaces, yet little is known about how these flying robots are perceived and understood by humans. Recent works suggested that their acceptance is predicated upon their sociability. This paper explores the use of facial expressions to represent emotions on social drones. We leveraged design practices from ground robotics and created a set of rendered robotic faces that convey basic emotions. We evaluated individuals’ response to these emotional facial expressions on drones in two empirical studies (N = 98, N = 98). Our results demonstrate that individuals accurately recognize five drone emotional expressions, as well as make sense of intensities within emotion categories. We describe how participants were emotionally affected by the drone, showed empathy towards it, and created narratives to interpret its emotions. As a consequence, we formulate design recommendations for social drones and discuss methodological insights on the use of static versus dynamic stimuli in affective robotics studies.

Skip Supplemental Material Section

Supplemental Material

3411764.3445495_videofigure.mp4

mp4

33.7 MB

References

  1. Dante Arroyo, Cesar Lucho, Silvia Julissa Roncal, and Francisco Cuellar. 2014. Daedalus: A sUAV for Human-Robot Interaction. In Proceedings of the 2014 ACM/IEEE International Conference on Human-Robot Interaction (Bielefeld, Germany) (HRI ’14). Association for Computing Machinery, New York, NY, USA, 116–117. https://doi.org/10.1145/2559636.2563709Google ScholarGoogle ScholarDigital LibraryDigital Library
  2. Mauro Avila Soto, Markus Funk, Matthias Hoppe, Robin Boldt, Katrin Wolf, and Niels Henze. 2017. DroneNavigator: Using Leashed and Free-Floating Quadcopters to Navigate Visually Impaired Travelers. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Machinery, New York, NY, USA, 300–304. https://doi.org/10.1145/3132525.3132556Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Tadas Baltrušaitis, Laurel D. Riek, and Peter Robinson. 2010. Synthesizing Expressions Using Facial Feature Point Tracking: How Emotion is Conveyed. In Proceedings of the 3rd International Workshop on Affective Interaction in Natural Environments (Firenze, Italy) (AFFINE ’10). Association for Computing Machinery, New York, NY, USA, 27–32. https://doi.org/10.1145/1877826.1877835Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Christoph Bartneck, Juliane Reichenbach, and Albert van Breemen. 2004. In your face, robot! The influence of a character’s embodiment on how users perceive its emotional expressions. In Proceedings of Design and Emotion 2004 Conference (Ankara, Turkey). 32–51.Google ScholarGoogle Scholar
  5. Joseph Bates. 1994. The Role of Emotion in Believable Agents. Commun. ACM 37, 7 (July 1994), 122–125. https://doi.org/10.1145/176789.176803Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Roy Baumeister, Kathleen Vohs, C DeWall, and Liqing Zhang. 2007. How Emotion Shapes Behavior: Feedback, Anticipation, and Reflection, Rather Than Direct Causation. Personality and Social Psychology Review 11 (06 2007), 167–203. https://doi.org/10.1177/1088868307301033Google ScholarGoogle ScholarCross RefCross Ref
  7. Mehmet Aydin Baytas, Damla Çay, Yuchong Zhang, Mohammad Obaid, Asim Evren Yantaç, and Morten Fjeld. 2019. The Design of Social Drones: A Review of Studies on Autonomous Flyers in Inhabited Environments. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300480Google ScholarGoogle ScholarDigital LibraryDigital Library
  8. Andrea Behrends, Sybille Müller, and Isabel Dziobek. 2012. Moving in and out of synchrony: A concept for a new intervention fostering empathy through interactional movement and dance. The Arts in Psychotherapy 39, 2 (2012), 107–116.Google ScholarGoogle ScholarCross RefCross Ref
  9. Margaret M. Bradley and Peter J. Lang. 1994. Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry 25, 1(1994), 49–59. https://doi.org/10.1016/0005-7916(94)90063-9Google ScholarGoogle ScholarCross RefCross Ref
  10. Cynthia Breazeal. 2001. Affective Interaction between Humans and Robots. In Proceedings of the 6th European Conference on Advances in Artificial Life (Prague, Czech Republic) (ECAL ’01). Springer-Verlag, Berlin, Heidelberg, 582–591.Google ScholarGoogle ScholarCross RefCross Ref
  11. Cynthia Breazeal. 2003. Emotion and Sociable Humanoid Robots. International Journal of Human-Computer Studies 59, 1–2 (July 2003), 119–155. https://doi.org/10.1016/S1071-5819(03)00018-1Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cynthia Breazeal. 2003. Toward sociable robots. Robotics and Autonomous Systems 42, 3-4 (2003), 167–175. https://doi.org/10.1016/S0921-8890(02)00373-1Google ScholarGoogle ScholarCross RefCross Ref
  13. Elizabeth Broadbent, Vinayak Kumar, Xingyan Li, John Sollers 3rd, Rebecca Q. Stafford, Bruce A. MacDonald, and Daniel M. Wegner. 2013. Robots with display screens: a robot with a more humanlike face display is perceived to have more mind and a better personality. PloS one 8, 8 (2013), e72589. https://doi.org/10.1371/journal.pone.0072589Google ScholarGoogle ScholarCross RefCross Ref
  14. Anke M. Brock, Julia Chatain, Michelle Park, Tommy Fang, Martin Hachet, James A. Landay, and Jessica R. Cauchard. 2018. FlyMap: Interacting with Maps Projected from a Drone. In Proceedings of the 7th ACM International Symposium on Pervasive Displays (Munich, Germany) (PerDis ’18). Association for Computing Machinery, New York, NY, USA, Article 13, 9 pages. https://doi.org/10.1145/3205873.3205877Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. A. Bruce, I. Nourbakhsh, and R. Simmons. 2002. The role of expressiveness and attention in human-robot interaction. In Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Vol. 4. IEEE, 4138–4142. https://doi.org/10.1109/ROBOT.2002.1014396Google ScholarGoogle ScholarCross RefCross Ref
  16. Andrew J. Calder, Andrew W. Young, Jill Keane, and Michael Dean. 2000. Configural information in facial expression perception.Journal of Experimental Psychology: Human Perception and Performance 26, 2(2000), 527–551. https://doi.org/10.1037//0096-1523.26.2.527Google ScholarGoogle ScholarCross RefCross Ref
  17. Lola Cañamero and Jakob Fredslund. 2001. I show you how I like you - can you read it in my face? [robotics]. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans 31, 5 (2001), 454–459. https://doi.org/10.1109/3468.952719Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Jessica R. Cauchard, Jane L. E, Kevin Y. Zhai, and James A. Landay. 2015. Drone & me: An Exploration into Natural Human-Drone Interaction. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (Osaka, Japan) (UbiComp ’15). Association for Computing Machinery, New York, NY, USA, 361–365. https://doi.org/10.1145/2750858.2805823Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. Jessica R. Cauchard, Kevin Y. Zhai, Marco Spadafora, and James A. Landay. 2016. Emotion Encoding in Human-Drone Interaction. In The Eleventh ACM/IEEE International Conference on Human Robot Interaction (Christchurch, New Zealand) (HRI ’16). IEEE, 263–270.Google ScholarGoogle Scholar
  20. Ashley Colley, Lasse Virtanen, Pascal Knierim, and Jonna Häkkilä. 2017. Investigating Drone Motion as Pedestrian Guidance. In Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia (Stuttgart, Germany) (MUM ’17). Association for Computing Machinery, New York, NY, USA, 143–150. https://doi.org/10.1145/3152832.3152837Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Juliet M. Corbin and Anselm Strauss. 1990. Grounded theory research: Procedures, canons, and evaluative criteria. Qualitative Sociology 13, 1 (1990), 3–21. https://doi.org/10.1007/BF00988593Google ScholarGoogle ScholarCross RefCross Ref
  22. Frédéric Dehais, Emrah Akin Sisbot, Rachid Alami, and Mickaël Causse. 2011. Physiological and subjective evaluation of a human–robot object hand-over task. Applied Ergonomics 42, 6 (2011), 785–791. https://doi.org/10.1016/j.apergo.2010.12.005Google ScholarGoogle ScholarCross RefCross Ref
  23. Brian R. Duffy. 2003. Anthropomorphism and the social robot. Robotics and Autonomous Systems 42, 3-4 (2003), 177–190. https://doi.org/10.1016/s0921-8890(02)00374-3Google ScholarGoogle ScholarCross RefCross Ref
  24. Jane L. E, Ilene L. E, James A. Landay, and Jessica R. Cauchard. 2017. Drone & Wo: Cultural Influences on Human-Drone Interaction Techniques. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, 6794–6799. https://doi.org/10.1145/3025453.3025755Google ScholarGoogle ScholarDigital LibraryDigital Library
  25. Paul Ekman and Wallace V. Friesen. 1971. Constants across cultures in the face and emotion. Journal of Personality and Social Psychology 17, 2(1971), 124–129. https://doi.org/10.1037/h0030377Google ScholarGoogle ScholarCross RefCross Ref
  26. Paul Ekman, Wallace V. Friesen, and Joseph C. Hager. 2002. Facial Action Coding System: The Manual on CD ROM. Salt Lake City, UT, USA.Google ScholarGoogle Scholar
  27. Hillary Anger Elfenbein and Nalini Ambady. 2003. When familiarity breeds accuracy: Cultural exposure and facial emotion recognition. Journal of Personality and Social Psychology 85, 2(2003), 276–290. https://doi.org/10.1037/0022-3514.85.2.276Google ScholarGoogle ScholarCross RefCross Ref
  28. Sara Eriksson, Åsa Unander-Scharin, Vincent Trichon, Carl Unander-Scharin, Hedvig Kjellström, and Kristina Höök. 2019. Dancing With Drones: Crafting Novel Artistic Expressions Through Intercorporeality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300847Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Friederike Eyssel, Frank Hegel, Gernot Horstmann, and Claudia Wagner. 2010. Anthropomorphic inferences from emotional nonverbal cues: A case study. In 19th International Symposium in Robot and Human Interactive Communication. IEEE, 646–651. https://doi.org/10.1109/ROMAN.2010.5598687Google ScholarGoogle ScholarCross RefCross Ref
  30. Julia Fink. 2012. Anthropomorphism and Human Likeness in the Design of Robots and Human-Robot Interaction. In International Conference on Social Robotics. Springer, 199–208. https://doi.org/10.1007/978-3-642-34103-8_20Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Kerstin Fischer, Malte Jung, Lars Christian Jensen, and Maria Vanessa aus der Wieschen. 2019. Emotion Expression in HRI – When and Why. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 29–38. https://doi.org/10.1109/HRI.2019.8673078Google ScholarGoogle ScholarCross RefCross Ref
  32. Terrence Fong, Illah Nourbakhsh, and Kerstin Dautenhahn. 2003. A survey of socially interactive robots. Robotics and Autonomous Systems 42, 3-4 (2003), 143–166. https://doi.org/10.1016/S0921-8890(02)00372-XGoogle ScholarGoogle ScholarCross RefCross Ref
  33. Alan J. Fridlund. 1991. Evolution and facial action in reflex, social motive, and paralanguage. Biological Psychology 32, 1 (1991), 3–100. https://doi.org/10.1016/0301-0511(91)90003-yGoogle ScholarGoogle ScholarCross RefCross Ref
  34. Nico H. Frijda and Batja Mesquita. 1994. The social roles and functions of emotions. In Emotion and Culture: Empirical Studies of Mutual Influence. American Psychological Association, Washington, DC, US, 51–87. https://doi.org/10.1037/10152-002Google ScholarGoogle ScholarCross RefCross Ref
  35. Chris D. Frith and Uta Frith. 2006. How we predict what other people are going to do. Brain Research 1079, 1 (2006), 36–46. https://doi.org/10.1016/j.brainres.2005.12.126Google ScholarGoogle ScholarCross RefCross Ref
  36. Shlomo Hareli and Anat Rafaeli. 2008. Emotion cycles: On the social influence of emotion in organizations. Research in Organizational Behavior 28 (2008), 35–59. https://doi.org/10.1016/j.riob.2008.04.007Google ScholarGoogle ScholarCross RefCross Ref
  37. Markus Häring, Nikolaus Bee, and Elisabeth André. 2011. Creation and Evaluation of emotion expression with body movement, sound and eye color for humanoid robots. In 2011 RO-MAN. IEEE, 204–209. https://doi.org/10.1109/ROMAN.2011.6005263Google ScholarGoogle ScholarCross RefCross Ref
  38. Guy Hoffman and Wendy Ju. 2014. Designing Robots with Movement in Mind. Journal of Human-Robot Interaction 3, 1 (Feb. 2014), 91–122. https://doi.org/10.5898/JHRI.3.1.HoffmanGoogle ScholarGoogle ScholarDigital LibraryDigital Library
  39. Jihong Hwang, Taezoon Park, and Wonil Hwang. 2013. The effects of overall robot shape on the emotions invoked in users and the perceived personalities of robot. Applied Ergonomics 44, 3 (2013), 459–471. https://doi.org/10.1016/j.apergo.2012.10.010Google ScholarGoogle ScholarCross RefCross Ref
  40. Alisa Kalegina, Grace Schroeder, Aidan Allchin, Keara Berlin, and Maya Cakmak. 2018. Characterizing the Design Space of Rendered Robot Faces. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (Chicago, IL, USA) (HRI ’18). Association for Computing Machinery, New York, NY, USA, 96–104. https://doi.org/10.1145/3171221.3171286Google ScholarGoogle ScholarDigital LibraryDigital Library
  41. Kari Daniel Karjalainen, Anna Elisabeth Sofia Romell, Photchara Ratsamee, Asim Evren Yantac, Morten Fjeld, and Mohammad Obaid. 2017. Social Drone Companion for the Home Environment: A User-Centric Exploration. In Proceedings of the 5th International Conference on Human Agent Interaction (Bielefeld, Germany) (HAI ’17). Association for Computing Machinery, New York, NY, USA, 89–96. https://doi.org/10.1145/3125739.3125774Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. L.N. Kendall, Quentin Raffaelli, Alan Kingstone, and Rebecca M. Todd. 2016. Iconic faces are not real faces: enhanced emotion detection and altered neural processing as faces become more iconic. Cognitive Research: Principles and Implications 1, 1, Article 19 (2016), 14 pages. https://doi.org/10.1186/s41235-016-0021-8Google ScholarGoogle ScholarCross RefCross Ref
  43. Bomyeong Kim, Hyun Young Kim, and Jinwoo Kim. 2016. Getting Home Safely with Drone. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (Heidelberg, Germany) (UbiComp ’16). Association for Computing Machinery, New York, NY, USA, 117–120. https://doi.org/10.1145/2968219.2971426Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. Eun Ho Kim, Sonya S. Kwak, and Yoon Keun Kwak. 2009. Can robotic emotional expressions induce a human to empathize with a robot?. In RO-MAN 2009 - The 18th IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 358–362. https://doi.org/10.1109/ROMAN.2009.5326282Google ScholarGoogle ScholarCross RefCross Ref
  45. Hyun Young Kim, Bomyeong Kim, and Jinwoo Kim. 2016. The Naughty Drone: A Qualitative Research on Drone as Companion Device. In Proceedings of the 10th International Conference on Ubiquitous Information Management and Communication (Danang, Viet Nam) (IMCOM ’16). Association for Computing Machinery, New York, NY, USA, Article 91, 6 pages. https://doi.org/10.1145/2857546.2857639Google ScholarGoogle ScholarDigital LibraryDigital Library
  46. Elly A. Konijn and Henriette C. Van Vugt. 2008. Emotions in Mediated Interpersonal Communication: Toward modeling emotion in virtual humans. In Mediated Interpersonal Communication. Routledge, 114–144.Google ScholarGoogle Scholar
  47. Dana Kulic and Elizabeth A. Croft. 2007. Affective State Estimation for Human–Robot Interaction. IEEE Transactions on Robotics 23, 5 (2007), 991–1000. https://doi.org/10.1109/TRO.2007.904899Google ScholarGoogle ScholarDigital LibraryDigital Library
  48. Aleksandra Kupferberg, Stefan Glasauer, Markus Huber, Markus Rickert, Alois Knoll, and Thomas Brandt. 2011. Biological movement increases acceptance of humanoid robots as human partners in motor interaction. AI & Society 26, 4 (2011), 339–345. https://doi.org/10.1007/s00146-010-0314-2Google ScholarGoogle ScholarDigital LibraryDigital Library
  49. Joseph La Delfa, Mehmet Aydin Baytas, Rakesh Patibanda, Hazel Ngari, Rohit Ashok Khot, and Florian ’Floyd’ Mueller. 2020. Drone Chi: Somaesthetic Human-Drone Interaction. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20). Association for Computing Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3313831.3376786Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. Iolanda Leite, André Pereira, Carlos Martinho, and Ana Paiva. 2008. Are emotional robots more fun to play with?. In RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication. IEEE, 77–82. https://doi.org/10.1109/ROMAN.2008.4600646Google ScholarGoogle ScholarCross RefCross Ref
  51. Jukka M. Leppänen and Jari K. Hietanen. 2004. Positive facial expressions are recognized faster than negative facial expressions, but why?Psychological Research 69, 1-2 (2004), 22–29. https://doi.org/10.1007/s00426-003-0157-2Google ScholarGoogle ScholarCross RefCross Ref
  52. Diana Löffler, Nina Schmidt, and Robert Tscharn. 2018. Multimodal Expression of Artificial Emotion in Social Robots Using Color, Motion and Sound. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (Chicago, IL, USA) (HRI ’18). Association for Computing Machinery, New York, NY, USA, 334–343. https://doi.org/10.1145/3171221.3171261Google ScholarGoogle ScholarDigital LibraryDigital Library
  53. Maya B Mathur and David B Reichling. 2016. Navigating a social world with robot partners: A quantitative cartography of the Uncanny Valley. Cognition 146(2016), 22–32. https://doi.org/10.1016/j.cognition.2015.09.008Google ScholarGoogle ScholarCross RefCross Ref
  54. Maya B. Mathur, David B. Reichling, Francesca Lunardini, Alice Geminiani, Alberto Antonietti, Peter A. M. Ruijten, Carmel Levitan, Gideon Nave, Dylan Manfredi, Brandy Bessette-Symons, Attila Szuts, and Balazs Aczel. 2020. Uncanny but not confusing: Multisite study of perceptual category confusion in the Uncanny Valley. Computers in Human Behavior 103 (2020), 21–30. https://doi.org/10.1016/j.chb.2019.08.029Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. John J. McArdle. 2009. Latent Variable Modeling of Differences and Changes with Longitudinal Data. Annual Review of Psychology 60 (2009), 577–605. https://doi.org/10.1146/annurev.psych.60.110707.163612Google ScholarGoogle ScholarCross RefCross Ref
  56. Masahiro Mori, Karl F. MacDorman, and Norri Kageki. 2012. The Uncanny Valley [From the Field]. IEEE Robotics Automation Magazine 19, 2 (2012), 98–100. https://doi.org/10.1109/MRA.2012.2192811Google ScholarGoogle ScholarCross RefCross Ref
  57. Florian Mueller and Matthew Muirhead. 2014. Understanding the Design of a Flying Jogging Companion. In Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST’14 Adjunct). Association for Computing Machinery, New York, NY, USA, 81–82. https://doi.org/10.1145/2658779.2658786Google ScholarGoogle ScholarDigital LibraryDigital Library
  58. Florian Mueller and Matthew Muirhead. 2014. Understanding the Design of a Flying Jogging Companion. In Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology (Honolulu, Hawaii, USA) (UIST’14 Adjunct). Association for Computing Machinery, New York, NY, USA, 81–82. https://doi.org/10.1145/2658779.2658786Google ScholarGoogle ScholarDigital LibraryDigital Library
  59. Bilge Mutlu, Fumitaka Yamaoka, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. 2009. Nonverbal Leakage in Robots: Communication of Intentions through Seemingly Unintentional Behavior. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (La Jolla, California, USA) (HRI ’09). Association for Computing Machinery, New York, NY, USA, 69–76. https://doi.org/10.1145/1514095.1514110Google ScholarGoogle ScholarDigital LibraryDigital Library
  60. Jean Newlove and John Dalby. 2004. Laban for all. Taylor & Francis US.Google ScholarGoogle Scholar
  61. Nikolaas N. Oosterhof and Alexander Todorov. 2008. The functional basis of face evaluation. Proceedings of the National Academy of Sciences 105, 32(2008), 11087–11092. https://doi.org/10.1073/pnas.0805664105Google ScholarGoogle ScholarCross RefCross Ref
  62. Nikolaas N. Oosterhof and Alexander Todorov. 2009. Shared perceptual basis of emotional expressions and trustworthiness impressions from faces. Emotion 9, 1 (2009), 128–133. https://doi.org/10.1037/a0014520Google ScholarGoogle ScholarCross RefCross Ref
  63. Hannah R. M. Pelikan, Mathias Broth, and Leelo Keevallik. 2020. ”Are You Sad, Cozmo?”: How Humans Make Sense of a Home Robot’s Emotion Displays. In Proceedings of the 2020 ACM/IEEE International Conference on Human-Robot Interaction(Cambridge, United Kingdom) (HRI ’20). Association for Computing Machinery, New York, NY, USA, 461–470. https://doi.org/10.1145/3319502.3374814Google ScholarGoogle ScholarDigital LibraryDigital Library
  64. Anssi Peräkylä and Johanna Elisabeth Ruusuvuori. 2012. Facial Expression and Interactional Regulation of Emotion. In Emotion in Interaction. Oxford University Press, Chapter 4, 64–91. https://doi.org/10.1093/acprof:oso/9780199730735.003.0004Google ScholarGoogle ScholarCross RefCross Ref
  65. Robert Plutchik. 1980. A general psychoevolutionary theory of emotion. In Theories of Emotion. Elsevier, 3–33. https://doi.org/10.1016/B978-0-12-558701-3.50007-7Google ScholarGoogle ScholarCross RefCross Ref
  66. Mauricio E. Reyes, Ivan V. Meza, and Luis A. Pineda. 2019. Robotics facial expression of anger in collaborative human–robot interaction. International Journal of Advanced Robotic Systems 16, 1 (2019), 13. https://doi.org/10.1177/1729881418817972Google ScholarGoogle ScholarCross RefCross Ref
  67. Tiago Ribeiro and Ana Paiva. 2012. The Illusion of Robotic Life: Principles and Practices of Animation for Robots. In Proceedings of the Seventh Annual ACM/IEEE International Conference on Human-Robot Interaction (Boston, Massachusetts, USA) (HRI ’12). Association for Computing Machinery, New York, NY, USA, 383–390. https://doi.org/10.1145/2157689.2157814Google ScholarGoogle ScholarDigital LibraryDigital Library
  68. Laurel D. Riek, Tal-Chen Rabinowitch, Bhismadev Chakrabarti, and Peter Robinson. 2009. How Anthropomorphism Affects Empathy toward Robots. In Proceedings of the 4th ACM/IEEE International Conference on Human Robot Interaction (La Jolla, California, USA) (HRI ’09). Association for Computing Machinery, New York, NY, USA, 245–246. https://doi.org/10.1145/1514095.1514158Google ScholarGoogle ScholarDigital LibraryDigital Library
  69. Annie Roy-Charland, Melanie Perron, Olivia Beaudry, and Kaylee Eady. 2014. Confusion of fear and surprise: A test of the perceptual-attentional limitation hypothesis with eye movement monitoring. Cognition and Emotion 28, 7 (2014), 1214–1222. https://doi.org/10.1080/02699931.2013.878687Google ScholarGoogle ScholarCross RefCross Ref
  70. Peter A. M. Ruijten and Raymond H. Cuijpers. 2018. If Drones Could See: Investigating Evaluations of a Drone with Eyes. In International Conference on Social Robotics. Springer, 65–74. https://doi.org/10.1007/978-3-030-05204-1_7Google ScholarGoogle ScholarCross RefCross Ref
  71. James A. Russell and Merry Bullock. 1985. Multidimensional scaling of emotional facial expressions: Similarity from preschoolers to adults. Journal of Personality and Social Psychology 48, 5(1985), 1290–1298. https://doi.org/10.1037/0022-3514.48.5.1290Google ScholarGoogle ScholarCross RefCross Ref
  72. Eleanor Sandry. 2015. Re-evaluating the form and communication of social robots. International Journal of Social Robotics 7, 3 (2015), 335–346. https://doi.org/10.1007/s12369-014-0278-3Google ScholarGoogle ScholarCross RefCross Ref
  73. Margret Selting. 2010. Affectivity in conversational storytelling: An analysis of displays of anger or indignation in complaint stories. Pragmatics 20, 2 (2010), 229–277. https://doi.org/10.1075/prag.20.2.06selGoogle ScholarGoogle ScholarCross RefCross Ref
  74. Megha Sharma, Dale Hildebrandt, Gem Newman, James E. Young, and Rasit Eskicioglu. 2013. Communicating Affect via Flight Path: Exploring Use of the Laban Effort System for Designing Affective Locomotion Paths. In Proceedings of the 8th ACM/IEEE International Conference on Human-Robot Interaction (Tokyo, Japan) (HRI ’13). IEEE, 293–300. https://doi.org/10.1109/HRI.2013.6483602Google ScholarGoogle ScholarCross RefCross Ref
  75. Takanori Shibata, Kazuyoshi Wada, Tomoko Saito, and Kazuo Tanie. 2005. Human interactive robot for psychological enrichment and therapy. In Proceedings of the AISB ’05 Symposium on Robot Companions: Hard Problems and Open Challenges in Robot-Human Interaction (University of Hertfordshire, Hatfield, UK), Vol. 5. The Society for the Study of Artificial Intelligence and the Simulation of Behaviour (AISB), 98–109.Google ScholarGoogle Scholar
  76. Stefan Sosnowski, Ansgar Bittermann, Kolja Kuhnlenz, and Martin Buss. 2006. Design and Evaluation of Emotion-Display EDDIE. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (Beijing, China). IEEE, 3113–3118. https://doi.org/10.1109/IROS.2006.282330Google ScholarGoogle ScholarCross RefCross Ref
  77. Lorna H. Stewart, Sara Ajina, Spas Getov, Bahador Bahrami, Alexander Todorov, and Geraint Rees. 2012. Unconscious evaluation of faces on social dimensions. Journal of Experimental Psychology: General 141, 4 (2012), 715–727. https://doi.org/10.1037/a0027950Google ScholarGoogle ScholarCross RefCross Ref
  78. Dante Tezza and Marvin Andujar. 2019. The State-of-the-Art of Human–Drone Interaction: A Survey. IEEE Access 7(2019), 167438–167454. https://doi.org/10.1109/ACCESS.2019.2953900Google ScholarGoogle ScholarCross RefCross Ref
  79. Tim Treurniet, Lang Bai, Simon à Campo, Xintong Wang, Jun Hu, and Emilia Barakova. 2019. Drones with eyes: expressive Human-Drone Interaction. In 1st International Workshop on Human-Drone Interaction. Glasgow, United Kingdom, 7. https://hal.archives-ouvertes.fr/hal-02128380Google ScholarGoogle Scholar
  80. Eva Wiese, Giorgio Metta, and Agnieszka Wykowska. 2017. Robots As Intentional Agents: Using Neuroscientific Methods to Make Robots Appear More Social. Frontiers in Psychology 8, Article 1663(2017), 19 pages. https://doi.org/10.3389/fpsyg.2017.01663Google ScholarGoogle ScholarCross RefCross Ref
  81. Anna Wojciechowska, Jeremy Frey, Esther Mandelblum, Yair Amichai-Hamburger, and Jessica R. Cauchard. 2019. Designing Drones: Factors and Characteristics Influencing the Perception of Flying Robots. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 3, 3, Article 111 (Sept. 2019), 19 pages. https://doi.org/10.1145/3351269Google ScholarGoogle ScholarDigital LibraryDigital Library
  82. Anna Wojciechowska, Jeremy Frey, Sarit Sass, Roy Shafir, and Jessica R. Cauchard. 2019. Collocated Human-Drone Interaction: Methodology and Approach Strategy. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI). IEEE, 172–181. https://doi.org/10.1109/HRI.2019.8673127Google ScholarGoogle ScholarCross RefCross Ref
  83. Anna Wojciechowska, Foad Hamidi, Andrés Lucero, and Jessica R. Cauchard. 2020. Chasing Lions: Co-Designing Human-Drone Interaction in Sub-Saharan Africa. In Proceedings of the 2020 ACM Designing Interactive Systems Conference (Eindhoven, Netherlands) (DIS ’20). Association for Computing Machinery, New York, NY, USA, 141–152. https://doi.org/10.1145/3357236.3395481Google ScholarGoogle ScholarDigital LibraryDigital Library
  84. Alexander Yeh, Photchara Ratsamee, Kiyoshi Kiyokawa, Yuki Uranishi, Tomohiro Mashita, Haruo Takemura, Morten Fjeld, and Mohammad Obaid. 2017. Exploring Proxemics for Human-Drone Interaction. In Proceedings of the 5th International Conference on Human Agent Interaction (Bielefeld, Germany) (HAI ’17). Association for Computing Machinery, New York, NY, USA, 81–88. https://doi.org/10.1145/3125739.3125773Google ScholarGoogle ScholarDigital LibraryDigital Library
  85. Shen Zhang, Zhiyong Wu, Helen M. Meng, and Lianhong Cai. 2007. Facial Expression Synthesis Using PAD Emotional Parameters for a Chinese Expressive Avatar. In Proceedings of the 2nd International Conference on Affective Computing and Intelligent Interaction (Lisbon, Portugal) (ACII ’07). Springer-Verlag, Berlin, Heidelberg, 24–35. https://doi.org/10.1007/978-3-540-74889-2_3Google ScholarGoogle ScholarDigital LibraryDigital Library
  86. Jiayin Zhao, Qi Meng, Licong An, and Yifang Wang. 2019. An event-related potential comparison of facial expression processing between cartoon and real faces. PLoS ONE 14, 1, Article e0198868(2019), 13 pages. https://doi.org/10.1371/journal.pone.0198868Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Drone in Love: Emotional Perception of Facial Expressions on Flying Robots
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in
      • Published in

        cover image ACM Conferences
        CHI '21: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
        May 2021
        10862 pages
        ISBN:9781450380966
        DOI:10.1145/3411764

        Copyright © 2021 ACM

        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        • Published: 7 May 2021

        Permissions

        Request permissions about this article.

        Request Permissions

        Check for updates

        Qualifiers

        • research-article
        • Research
        • Refereed limited

        Acceptance Rates

        Overall Acceptance Rate6,199of26,314submissions,24%

        Upcoming Conference

        CHI '24
        CHI Conference on Human Factors in Computing Systems
        May 11 - 16, 2024
        Honolulu , HI , USA

      PDF Format

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format .

      View HTML Format