Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasmonic visible–near infrared photothermal activation of olefin metathesis enabling photoresponsive materials

Abstract

Light-induced catalysis and thermoplasmonics are promising fields creating many opportunities for innovative research. Recent advances in light-induced olefin metathesis have led to new applications in polymer and material science, but further improvements to reaction scope and efficiency are desired. Herein, we present the activation of latent ruthenium-based olefin metathesis catalysts via the photothermal response of plasmonic gold nanobipyramids. Simple synthetic control over gold nanobipyramid size results in tunable localized surface plasmon resonance bands enabling catalyst initiation with low-energy visible and infrared light. This approach was applied to the ROMP of dicyclopentadiene, affording plasmonic polymer composites with exceptional photoresponsive and mechanical properties. Moreover, this method of catalyst activation was proven to be remarkably more efficient than activation through conventional heating in all the metathesis processes tested. This study paves the way for providing a wide range of photoinduced olefin metathesis processes in particular and photoinduced latent organic reactions in general by direct photothermal activation of thermally latent catalysts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Plasmon-induced DCPD polymerization.
Fig. 2: Moulding and printing of PPCs.
Fig. 3: Photoresponsive reaction vials.
Fig. 4: Mechanical characterization of AuBP–pDCPD composite.

Similar content being viewed by others

Data availability

All data supporting this study can be found within the paper and the Supplementary Information and Videos. Source data are provided with this paper.

References

  1. Jauffred, L., Samadi, A., Klingberg, H., Bendix, P. M. & Oddershede, L. B. Plasmonic heating of nanostructures. Chem. Rev. 119, 8087–8130 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Saha, K., Agasti, S. S., Kim, C., Li, X. & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li, S. et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv. Mater. 33, 2000086 (2021).

    Article  CAS  Google Scholar 

  5. O’Neal, D. P., Hirsch, L. R., Halas, N. J., Payne, J. D. & West, J. L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett. 209, 171–176 (2004).

    Article  PubMed  Google Scholar 

  6. Shukla, R. et al. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21, 10644–10654 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, J. et al. Gold nanorods: the most versatile plasmonic nanoparticles. Chem. Rev. 121, 13342–13453 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Jiang, R., Cheng, S., Shao, L., Ruan, Q. & Wang, J. Mass-based photothermal comparison among gold nanocrystals, PbS nanocrystals, organic dyes, and carbon black. J. Phys. Chem. C 117, 8909–8915 (2013).

    Article  CAS  Google Scholar 

  9. Li, N., Zhao, P. & Astruc, D. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew. Chem. Int. Ed. 53, 1756–1789 (2014).

    Article  CAS  Google Scholar 

  10. Sánchez-Iglesias, A. et al. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc. 139, 107–110 (2017).

    Article  PubMed  Google Scholar 

  11. Liu, M., Guyot-Sionnest, P., Lee, T.-W. & Gray, S. K. Optical properties of rodlike and bipyramidal gold nanoparticles from three-dimensional computations. Phys. Rev. B 76, 235428 (2007).

    Article  Google Scholar 

  12. Chow, T. H. et al. Gold nanobipyramids: an emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 52, 2136–2146 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Yougbaré, S. et al. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J. Hazard. Mater. 407, 124617 (2021).

    Article  PubMed  Google Scholar 

  14. Zhu, X. et al. Selective Pd deposition on Au nanobipyramids and Pd site-dependent plasmonic photocatalytic activity. Adv. Func. Mater. 27, 1700016 (2017).

  15. Lee, J.-H. et al. Plasmonic photothermal gold bipyramid nanoreactors for ultrafast real-time bioassays. J. Am. Chem. Soc. 139, 8054–8057 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Eivgi, O., Phatake, R. S., Nechmad, N. B. & Lemcoff, N. G. Light-activated olefin metathesis: catalyst development, synthesis, and applications. Acc. Chem. Res. 53, 2456–2471 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Eivgi, O. & Lemcoff, N. G. Turning the light on: recent developments in photoinduced olefin metathesis. Synthesis 50, 49–63 (2018).

    Article  CAS  Google Scholar 

  18. Vidavsky, Y. & Lemcoff, N. G. Light-induced olefin metathesis. Beilstein J. Org. Chem. 6, 1106–1119 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harvey, F. M. & Bochet, C. G. Photochemical methods in metathesis reactions. Org. Biomol. Chem. 18, 8034–8057 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Levin, E., Mavila, S., Eivgi, O., Tzur, E. & Lemcoff, N. G. Regioselective chromatic orthogonality with light-activated metathesis catalysts. Angew. Chem. Int. Ed. 54, 12384–12388 (2015).

    Article  CAS  Google Scholar 

  21. Sutar, R. L. et al. Guiding a divergent reaction by photochemical control: bichromatic selective access to levulinates and butenolides. Chem. Sci. 9, 1368–1374 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Eivgi, O., Sutar, R. L., Reany, O. & Lemcoff, N. G. Bichromatic photosynthesis of coumarins by UV filter-enabled olefin metathesis. Adv. Synth. Catal. 359, 2352–2357 (2017).

    Article  CAS  Google Scholar 

  23. Sutar, R. L. et al. A light-activated olefin metathesis catalyst equipped with a chromatic orthogonal self-destruct function. Angew. Chem. Int. Ed. 55, 764–767 (2016).

    Article  CAS  Google Scholar 

  24. Eivgi, O., Vaisman, A., Nechmad, N. B., Baranov, M. & Lemcoff, N. G. Latent ruthenium benzylidene phosphite complexes for visible-light-induced olefin metathesis. ACS Catal. 10, 2033–2038 (2020).

    Article  CAS  Google Scholar 

  25. Stawiasz, K. J., Paul, J. E., Schwarz, K. J., Sottos, N. R. & Moore, J. S. Photoexcitation of Grubbs’ second-generation catalyst initiates frontal ring-opening metathesis polymerization. ACS Macro Lett. 9, 1563–1568 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Dean, L. M., Ravindra, A., Guo, A. X., Yourdkhani, M. & Sottos, N. R. Photothermal initiation of frontal polymerization using carbon nanoparticles. ACS Appl. Polym. Mater. 2, 4690–4696 (2020).

    Article  CAS  Google Scholar 

  27. Ivry, E. et al. Light- and thermal-activated olefin metathesis of hindered substrates. Organometallics 37, 176–181 (2018).

    Article  CAS  Google Scholar 

  28. Segalovich-Gerendash, G. et al. Imposing latency in ruthenium sulfoxide-chelated benzylidenes: expanding opportunities for thermal and photoactivation in olefin metathesis. ACS Catal. 10, 4827–4834 (2020).

    Article  CAS  Google Scholar 

  29. Nechmad, N. B. et al. Reactivity and selectivity in ruthenium sulfur-chelated diiodo catalysts. Angew. Chem. Int. Ed. 60, 6372–6376 (2021).

    Article  CAS  Google Scholar 

  30. Eivgi, O. et al. Photoactivation of ruthenium phosphite complexes for olefin metathesis. ACS Catal. 8, 6413–6418 (2018).

    Article  CAS  Google Scholar 

  31. Eivgi, O., Vaisman, A. & Lemcoff, N. G. Latent, yet highly active photoswitchable olefin metathesis precatalysts bearing cyclic alkyl amino carbene (CAAC)/phosphite ligands. ACS Catal. 11, 703–709 (2021).

    Article  CAS  Google Scholar 

  32. Theunissen, C., Ashley, M. A. & Rovis, T. Visible-light-controlled ruthenium-catalyzed olefin metathesis. J. Am. Chem. Soc. 141, 6791–6796 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trinh, T. K. H. et al. Combining a ligand photogenerator and a Ru precatalyst: a photoinduced approach to cross-linked ROMP polymer films. RSC Adv. 9, 27789–27799 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pinaud, J. et al. In situ generated ruthenium–arene catalyst for photoactivated ring-opening metathesis polymerization through photolatent N-heterocyclic carbene ligand. Chem. Eur. J. 24, 337–341 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Khalimon, A. Y., Leitao, E. M. & Piers, W. E. Photogeneration of a phosphonium alkylidene olefin metathesis catalyst. Organometallics 31, 5634–5637 (2012).

    Article  CAS  Google Scholar 

  36. Keitz, B. K. & Grubbs, R. H. A tandem approach to photoactivated olefin metathesis: combining a photoacid generator with an acid activated catalyst. J. Am. Chem. Soc. 131, 2038–2039 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Bantreil, X., Schmid, T. E., Randall, R. A. M., Slawin, A. M. Z. & Cazin, C. S. J. Mixed N-heterocyclic carbene/phosphite ruthenium complexes: towards a new generation of olefin metathesis catalysts. Chem. Comm. 46, 7115–7117 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Guidone, S., Songis, O., Nahra, F. & Cazin, C. S. J. Conducting olefin metathesis reactions in air: breaking the paradigm. ACS Catal. 5, 2697–2701 (2015).

    Article  CAS  Google Scholar 

  39. Fasciani, C., Alejo, C. J. B., Grenier, M., Netto-Ferreira, J. C. & Scaiano, J. C. High-temperature organic reactions at room temperature using plasmon excitation: decomposition of dicumyl peroxide. Org. Lett. 13, 204–207 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Qiu, J. et al. Surface plasmon mediated chemical solution deposition of gold nanoparticles on a nanostructured silver surface at room temperature. J. Am. Chem. Soc. 135, 38–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Baffou, G., Polleux, J., Rigneault, H. & Monneret, S. Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014).

    Article  CAS  Google Scholar 

  42. Baffou, G., Cichos, F. & Quidant, R. Applications and challenges of thermoplasmonics. Nat. Mater. 19, 946–958 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Butilkov, D., Frenklah, A., Rozenberg, I., Kozuch, S. & Lemcoff, N. G. Highly selective olefin metathesis with CAAC-containing ruthenium benzylidenes. ACS Catal. 7, 7634–7637 (2017).

    Article  CAS  Google Scholar 

  44. Butilkov, D. & Lemcoff, N. G. Jojoba oil olefin metathesis: a valuable source for bio-renewable materials. Green Chem. 16, 4728–4733 (2014).

    Article  CAS  Google Scholar 

  45. Fedoruk, M., Meixner, M., Carretero-Palacios, S., Lohmüller, T. & Feldmann, J. Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. ACS Nano 7, 7648–7653 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Asmussen, S. V., Arenas, G. F. & Vallo, C. I. Enhanced degree of polymerization of methacrylate and epoxy resins by plasmonic heating of embedded silver nanoparticles. Prog. Org. Coat. 88, 220–227 (2015).

    Article  CAS  Google Scholar 

  47. Bukovinszky, K. et al. Optimization of plasmonic gold nanoparticle concentration in green LED light active dental photopolymer. Polymers 13, 275 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pastoriza-Santos, I., Kinnear, C., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Plasmonic polymer nanocomposites. Nat. Rev. Mater. 3, 375–391 (2018).

    Article  Google Scholar 

  49. Fang, C., Shao, L., Zhao, Y., Wang, J. & Wu, H. A gold nanocrystal/poly(dimethylsiloxane) composite for plasmonic heating on microfluidic chips. Adv. Mater. 24, 94–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Kovačič, S. & Slugovc, C. Ring-opening metathesis polymerisation derived poly(dicyclopentadiene) based materials. Mater. Chem. Front. 4, 2235–2255 (2020).

    Article  Google Scholar 

  51. Phatake, R. S., Masarwa, A., Lemcoff, N. G. & Reany, O. Tuning thermal properties of cross-linked DCPD polymers by functionalization, initiator type and curing methods. Polym. Chem. 11, 1742–1751 (2020).

    Article  CAS  Google Scholar 

  52. Saha, S. et al. Cross-linked ROMP polymers based on odourless dicyclopentadiene derivatives. Polym. Chem. 7, 3071–3075 (2016).

    Article  CAS  Google Scholar 

  53. Monsaert, S., Vila, A. L., Drozdzak, R., Der Voort, P. V. & Verpoort, F. Latent olefin metathesis catalysts. Chem. Soc. Rev. 38, 3360–3372 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, W. et al. Size-dependent longitudinal plasmon resonance wavelength and extraordinary scattering properties of Au nano bipyramids. Nanotechnology 29, 355402 (2018).

    Article  PubMed  Google Scholar 

  55. Campu, A., Craciun, A. M., Focsan, M. & Astilean, S. Assessment of the photothermal conversion efficiencies of tunable gold bipyramids under irradiation by two laser lines in a NIR biological window. Nanotechnology 30, 405701 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Steese, N. D. et al. Synthesis and thermal properties of linear polydicyclopentadiene via ring-opening metathesis polymerization with a third generation grubbs-type ruthenium-alkylidene complex. J. Polym. Sci. A Polym. Chem. 56, 359–364 (2018).

    Article  CAS  Google Scholar 

  57. Baffou, G. & Quidant, R. Nanoplasmonics for chemistry. Chem. Soc. Rev. 43, 3898–3907 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, W. et al. Latent catalyst-containing naphthoxazine: synthesis and effects on ring-opening polymerization. Macromolecules 49, 7129–7140 (2016).

    Article  CAS  Google Scholar 

  59. Lochab, B. et al. Review on the accelerated and low‐temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers. Polymers 13, 1260 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nagyházi, M. et al. Catalytic decomposition of long-chain olefins to propylene via isomerization-metathesis using latent bicyclic (alkyl)(amino)carbene-ruthenium olefin metathesis catalysts. Angew. Chem. Int. Ed. 61, e202204413 (2022).

Download references

Acknowledgements

We thank T. Lemcoff for editing all Supplementary Videos. We thank E. Nativ-Roth for taking all SEM images. We thank R. Schneck and Y. Unigovski for carrying out the tensile strength measurements. This work was supported by the Zuckerman STEM Leadership Program and the Israel Science Foundation (ISF) grant no. 2491/20 to Y.W., and ISF grant no. 506/18 to N.G.L. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and N.G.L. supervised the project. N.L., N.B.N. and O.E. conducted all experiments. E.Y., N.L. and O.S. set up the LED temperature regulation system. N.L., O.S., A.B. and D.Y. synthesized the nanoparticles. N.L., N.B.N., A.V. and O.E. synthesized all catalysts. R.S.P. and N.B.N. conducted the mechanical analysis experiments. N.L., O.E., N.G.L. and Y.W. wrote the manuscript.

Corresponding author

Correspondence to Yossi Weizmann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Jianfang Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–81 and Tables 1–7.

Supplementary Video 1

Side-by-side videos of a PPC850 film (20 OD) being irradiated with an 850 nm LED (100 W). On the left is the normal recording. On the right is the thermal camera (Flir One) recording, including its temperature reading.

Supplementary Video 2

Preparation process of photoresponsive PPC660 (20 OD) coil. Initially, the ‘soft’ polymer was shaped. After the shaping was complete, photothermal curing was achieved by irradiating with a 660 nm LED (200 W). Finally, the coil’s toughness was demonstrated.

Supplementary Video 3

Preparation process of photoresponsive PPC850 (20 OD) knot. Initially, the ‘soft’ polymer was shaped into a knot. It was then irradiated with an 850 nm LED (100 W) until photothermal curing was complete. Finally, the knot’s toughness was demonstrated; one can clearly see that cured sections are rigid, and non-cured sections are flexible.

Supplementary Video 4

Side-by-side video of a funnel blocked by the photoresponsive jojoba-derived wax (embedded with AuBP850 at 10 OD). The funnel was filled with water and then irradiated with an 850 nm LED (100 W). The wax’s photothermal response caused its melting, and the water was spilled. This simple demonstration hints at potential applications for materials of this type.

Source data

Source Data Fig. 1

Underlying raw data of Fig. 1b,c.

Source Data Fig. 3

Underlying raw data of Fig. 3c,d.

Source Data Fig. 4

Underlying raw data of Fig. 4a,b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemcoff, N., Nechmad, N.B., Eivgi, O. et al. Plasmonic visible–near infrared photothermal activation of olefin metathesis enabling photoresponsive materials. Nat. Chem. 15, 475–482 (2023). https://doi.org/10.1038/s41557-022-01124-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-01124-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing